Skip to content

Research and Development


CFturbo gives users the power to design best-in-class turbomachinery components in less time. This is crucial to streamlining the research and development process.

Besides dedicated design methods within CFturbo, we are deeply involved in CAE workflow development.

Automated CAE workflows become more and more important. CFturbo is open to be integrated into any workflow of initial design, simulation, and optimization.

On a regular basis, CFturbo is part of funded projects in cooperation with German universities, research institutes, and companies.

Funded projects of the Saxon Development Bank


An innovative method for design exploration to optimize turbomachinery

The goal of this funded project is to automatically design optimized turbomachinery components. Virtual statistical experimental design methods (V.DoE) will be implemented into CFturbo software.

It focuses on creating an affordable, robust methodology that automatically varies important geometric parameters of turbomachinery models. Designs will be validated by 3D CFD.

In our vision we will have a method to optimize turbomachinery with very limited resources.


Automatic optimization of turbomachinery

The goal of the project is to develop a robust optimization workflow based on CFturbo. It should allow the integration of various optimization codes as well as simulation tools. This way the user can spend significantly less time and energy compared to common, interactive optimization.

A user-friendly GUI will support a user to set up the workflow. This opens optimization workflows to a wider range of users besides high-skilled specialists.

In this way, small and mid-sized companies would get access to automated product optimization.


High quality 3D geometry model of turbomachinery components

The project centers on advanced development of 3D geometry modeling methods and validation which are available in CFturbo.

The geometry models are the basis for simulation and optimization. They have to be validated and improved during the virtual design process in order to eventually build physical turbomachinery components.

High-quality, detailed modeling of material domain and flow domain is essential. In order to build components, you need high-quality models.

This project aims to improve modeling and validation strategies used in CFturbo, which will streamline the whole design process and the quality of exported data.

Learn more about our published research projects.

Publications

Please contact us if you want to make a joint research project with us.

Contact