

Optimization and design of turbo machines using ANSYS optiSLang and CFturbo

Marius Korfanty, CFturbo GmbH Markus Wagner, Dynardo GmbH

Outline

- Introduction into optiSLang and CFturbo
- I : Optimization of an axial pump (M. Korfanty, CFturbo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization
 - Summary
- II : Performance map analysis of a radial compressor (M. Wagner, Dynardo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization on MOP
 - Summary

Outline

- Introduction into optiSLang and CFturbo
- I : Optimization of an axial pump (M. Korfanty, CFturbo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization
 - Summary
- II : Performance map analysis of a radial compressor (M. Wagner, Dynardo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization on MOP
 - Summary

Dynardo

- Founded: 2001
- More than 60 employees, offices at Weimar and Vienna
- Leading technology companies Daimler, Bosch, ZF/TRW, Siemens are supported

Software Development

Dynardo is engineering specialist for CAE-based sensitivity analysis, optimization, robustness evaluation and robust design optimization

CAE-Consulting

- Mechanical engineering
- Civil engineering & Geomechanics
- Automotive industry
- Consumer goods industry
- Power generation

BALANCED

• is a **general purpose tool** for variation analysis

using CAE-based design sets (and/or data sets) for the purpose of

- sensitivity analysis
- design/data exploration
- calibration of virtual models to tests
- optimization of product performance
- quantification of product robustness and product reliability
- Robust Design Optimization (RDO) and Design for Six Sigma (DFSS)

serves arbitrary CAX tools with — process automation

support of process integration
 process automation
 workflow generation

Outline

- Introduction into optiSLang and CFturbo
- I: Optimization of an axial pump (M. Korfanty, CFturbo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization
 - Summary
- II : Performance map analysis of a radial compressor (M. Wagner, Dynardo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization on MOP
 - Summary

Design Software

- CFturbo[®] is a modern, powerful and user-friendly software for Conceptual Turbomachinery Design
- 160 active clients globally
- CFturbo[®] modules to design
 - Pumps
 - Blowers
 - Compressors
 - Turbines
 - Stators and diffusers
 - Volutes

• Industries: Aerospace, Automotive, Consumer Products, Energy, Oil & Gas, Marine, Mechanical & Process Engineering, Semiconductor,

Company structure

I Aim of analysis

Design point

- Flow rate Q = $1.476 \text{ m}^3/\text{s}$
- Total pressure difference $\Delta p_t = 0.466$ bar (H = 4.755 m)
- Rotational speed = 780 rpm
- Water, no pre-swirl

Objective

• Max. hydraulic efficiency η

Constraints

- $\beta_{B2} < 90^{\circ}$
- Total pressure difference $\Delta p_t \pm 10\%$

I CAE Workflow – CFturbo

님 oriș	jinal_A	xialPump.cft-batch
1	</th <th><pre>xml version="1.0" standalone="yes"?> ^</pre></th>	<pre>xml version="1.0" standalone="yes"?> ^</pre>
2	₽ < 0	FturboFile Version="10">
3	þ	<cfturbobatchproject inputfile="K:\jakisch\1_WOST_Gero\CFt_files\original_Axi</th></tr><tr><th>4</th><th>þ</th><th><Updates></th></tr><tr><th>5</th><th>þ</th><th><CFturboProject Type=" object"=""></cfturbobatchproject>
6	þ	<pre><cfturbodesign_axialimpeller desc="Main dimensions" name="<Impeller_1&g</pre></th></tr><tr><th>7</th><th>þ</th><th><MainDimensions Type=" object"="" type="Object"></cfturbodesign_axialimpeller></pre>
8	þ	<maindimensionselement de<="" name="Version 1." th="" type="Object"></maindimensionselement>
9		<rtip desc="Tip clearance" type="Float">0.003</rtip>
10	-	
11	-	
12	þ	<meridian desc="Meridian" type="Object"></meridian>
13	þ	<tgrmer_aimp desc="Meridional contour" type="Object"></tgrmer_aimp>
14	þ	<bezier4merle des<="" name="GeoLeadingEdge" th="" type="Object"></bezier4merle>
15	þ	<points count="5" desc="Control poi</th></tr><tr><th>16</th><th>¢</th><th><Point Type=" index="0" point"="" type="Points"></points>
17		<pre><x type="Float">0.02045</x></pre>
18		<pre><y type="Float">0.0876</y></pre>
19	-	
20	þ	<point index="1" type="Point"></point>
21		<pre><x type="Float">0.02045</x></pre>
22		<pre><y type="Float">0.12116667</y></pre>
23	-	
24	þ	<point index="2" type="Point"></point>
25		<x type="Float">0.02045</x>

→ Fully parametric geometry model of machines
→ Each parameter can be used for optimization

I CAE Workflow – PumpLinx

CFD system with high solver speed, especially for fluid systems with rotating/sliding components

Webinar: Optimization and design of turbomachines using ANSYS optiSLang and CFturbo

I CAE Workflow – Optimization parameters

	#	Parameter	Reference	Minimum	Maximum
	1	$d_{H1} = d_{H2}$	176 mm	140 mm	210 mm
Main dimensions	2	$d_{S1} = d_{S2}$	584 mm	467 mm	700 mm
		$v = d_{H1}/d_{S1}$	0.30	0.20	0.45
	3	Δz	204 mm	160 mm	320 mm
	4	Z _{LE,H} *	0.1	0.2	0.1
Meridional contour	5	Z _{LE,S} *	0.2	0.02	0.4
	6	Z _{TE,H} *	0.9	0.8	0.9
	7	Z _{TE,S} *	0.9	0.6	0.98

Simplifications:

- Hub and Shroud (Tip) axis-parallel
- Straight meridional leading and trailing edge

I CAE Workflow – Optimization parameters

	#	Parameter	Reference	Minimum	Maximum
Blade properties	8	n _{Bl}	3	2	6
	9	t _{LE,S}	0°	-25°	25°
	10	t _{TE,S}	80.3°	64.25°	96.37°
	11	t _{te,H}	80.3°	64.25°	96.37°
Mean lines	12	m _{βB1,H} *	0.333	0.1	0.4
	13	m _{βB1,S} *	0.166	0.1	0.4
	14	m _{βB2,H} *	0.718	0.6	0.9
	15	m _{βB2,S} *	0.773	0.6	0.9

15 parameters for optimization

Simplifications:

- Free vortex velocity distribution
- Automatic calculation of blade angles β_{B1} (shock-less inflow), β_{B2} (Euler equation)

I CAE Workflow – Optimization Cycle

Webinar: Optimization and design of turbomachines using ANSYS optiSLang and CFturbo

I Sensitivity analysis

Advanced Latin Hypercube Sampling

		Samples				
		100	200	300		
Failed	CFturbo	15	32	46		
Falleu	PumpLinx	1	3	9		
Valid	complex	84 165		245		
Reduced	samples	74	139	233		
	Q	83.6%	86.6%	89.1%		
CoD	Δp_t	85.8%	90.6%	88.4%		
COP	Р	91.5%	92.9%	94.0%		
	η	57.4%	66.5%	73.6%		

I Sensitivity analysis

Ρ

η hydraulic efficiency (objective)

$$\eta = \frac{\mathbf{Q} \cdot \Delta \mathbf{p}_{t}}{\mathbf{P}}$$

- Flow rate
- Δp_t Total pressure difference
 - Power consumption

Reduced to 7 parameters

Webinar: Optimization and design of turbomachines using ANSYS optiSLang and CFturbo

20

I Sensitivity analysis – Geometry examples

I Optimization

Algorithm	Samples	Simulation time	Simulation time/ sample	η
EA Evolutionary Algorithm	330	72.2 h (3.0 d)	13.1 min	69,9% +5.0%
ARSM Adaptive Response Surface Method	540	126.3 h (5.3 d)	14.0 min	69,3% +4.4%

Desktop PC

- 2 x Intel Xeon 3.07 GHz, 6 cores
- 64 GB RAM
- Max. 2 parallel simulation jobs

I Optimization

Summary

- Workflow CFturbo + PumpLinx + optiSLang successful set up and >80% successful designs in sensitivity analysis
- CFturbo initial design can be used as very reasonable starting point ("pre-optimized") to save computation time
- CFturbo provides a well parametrized geometry that enables to work in a wide parameter range
- PumpLinx solver speed is beneficial for optimization and enables optimization on desktop PCs
- Threw the sensitivity analyses the imported parameters could be identified
- Number of parameters could be reduced to ~ 50% by sensitivity analysis for the direct optimization
- Efficiency could be improved by 5% compared to the reference design by using direct optimization

Outline

- Introduction into optiSLang and CFturbo
- I : Optimization of an axial pump (M. Korfanty, CFturbo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization
 - Summary
- II : Performance map analysis of a radial compressor (M. Wagner, Dynardo GmbH)
 - Aim of analysis
 - CAE Workflow
 - Sensitivity analysis
 - Optimization on MOP
 - Summary

Supported by Thuringia from funds of the European Social Fund.

II Aim of analysis

Performance indicators for characterizing turbochargers:

- Pressure ratio $\pi_{tt} = \frac{p_{t2}}{p_{t1}}$
- Isentropic efficiency

$$\boldsymbol{\eta}_{s} = \frac{\left[\left(\frac{p_{t\,2}}{pt\,1}\right)^{\frac{\kappa-1}{\kappa}}-1\right]}{\left(\frac{T_{t\,2}}{T_{t\,1}}-1\right)} \qquad \boldsymbol{\pi}$$

 polytropic efficiency

$$\boldsymbol{\eta}_p = \frac{\frac{\kappa - 1}{\kappa} \ln(\frac{p_{t\,2}}{p_{t\,1}})}{\ln(\frac{T_{t\,2}}{Tt\,1})}$$

II Aim of analyzes

How to analyze and compare maps?

CFturbo[®]

II CAE Workflow

Workflow:

- Driven by optiSLang •
- Geometry and the • 1D flow computation (CFturbo)
- Meshing (TurboGrid) •
- 3D CFD of performance map (CFX) ٠

II CAE Workflow

- Geometry parameters are determined to generate a 3D geometry
- CFturbo allows geometry variations in a large design space

II CAE Workflow

II CAE Workflow

II Sensitivity analysis Parametrization

Parameters that have been used:

- global parameters: d_{2G}=konst., b₂, d_S
- leading edge of main and splitter blade
- blade angle β₁, β₂
 (β₂: hub dep. on shroud)
- Bezier curves hub and shroud
- number of Blades
- blade mean lines
- wrap angle

Total 31 free Parameter

 d_{S}

e.g. Position of leading edge at splitter

		Name	Reference value	Operation	Resolution	Ra	inge	Range plot
	1	nSector	6	_Impeller_1_1.nBl/2				
	2	X_\$2	0.298315	X_S2_Anstieg*_Impeller_1_1.GeoSplitLe				
	3	warp_angle_delta	0		Continuous	0	0.2	
	4	X_S	0.35	max(X_S1,X_S2)				
	5	X_S_Wertebereich	0.5		Continuous	0	1	
	6	_Impeller_1_1.nBl	12		Ordinal discrete (by index)	8; 10; 12; 1	4; 16; 18	
	7	_Impeller_1_1.GeoLeadingEdge.u_Hub	0.0446449		Continuous	0.025	0.15	
	8	dS_delta	0.75		Continuous	0.5	0.8	
	9	_Impeller_1_1.Version_1.dS	0.048	_Impeller_1_1.Version_1.d2*dS_delta				
	10	_Impeller_1_1.MainBlades.0.Point3.x	1.29822	_Impeller_1_1.MainBlades.2.Point3.x +warp_angle_delta				
	11	_Impeller_1_1.Version_1.b2	0.0055		Continuous	0.005	0.006	
Ч	12	_Impeller_1_1.GeoLeadingEdge.u_Shroud	0.107324		Continuous	0.025	0.26	
u _{2G}	13	_Impeller_1_1.MainBlades.2.Point3.x	1.29822		Continuous	1.09	1.48	
	14	_Impeller_1_1.GeoSplitLeadingEdge.u_Hub	0.348315		Continuous	0.2	0.75	
	15	_Impeller_1_1.GeoSplitLeadingEdge.u_Shr	0.525	X_S_Wertebereich*(0.7-X_S)+X_S				
	16	_Impeller_1_1.GeoHub.0.Rel1.x	0.299158		Continuous	0.15	0.45	
7	17	_Impeller_1_1.GeoHub.0.Rel1.y	-1.03032e-09		Continuous	-0.07	0.07	
	18	_Impeller_1_1.GeoHub.0.Rel2.x	1		Continuous	0.85	1.1	
	19	_Impeller_1_1.GeoHub.0.Rel2.y	2.85369e-09		Continuous	-0.15	0.15	
	20	_Impeller_1_1.GeoHub.0.Rel3.x	1		Continuous	0.96	1.05	
	21	_Impeller_1_1.GeoHub.0.Rel3.y	0.950027		Continuous	0.8	0.97	
	22	_Impeller_1_1.GeoShroud.0.Rel1.x	0.627744		Continuous	0.48	0.78	

b,

II Sensitivity analysis Methodology

Sensitivity analysis scans the design space and evaluates the variance of the inputs- (e.g. Geometry) output parameters (e.g. pressure ratio)

1) Design of experiments within the design space of the sensitivity analysis and calculate the Designs,

2) Usage of regression methods for setting Meta-Models e.g. pressure ratio and

CFturbo[®]

II Sensitivity analyzes Results overview

sensitivity study of performance maps

- 88% successful design points
 - 1% no geometry generation
 - 5% failed meshing ٠
 - 6% problems with CFD Solver

Generation of response surfaces

- Approximation accuracy is good for • choke and $\pi_{tt \max n1}$
- Dissatisfying quality e.g. for $\eta_{p \max}$ •
- Increase number of Designs/ • speed line for better COP!

Number of speed lines: 2

Max. number of operating points/ speed line: 6

Meta-	1	$n_1 = 12$	0000 [1 <i>/min</i>]	$n_2 = 150000 \; [1/min]$			
modell	$\pi_{tt max}$	$\eta_{p max}$	choke massflow	$\pi_{tt max}$	$\eta_{p max}$	choke massflow	
<i>CoP</i> [%]	83	45	91	45	48	91	

II Sensitivity analysis Meta-Model, Results for n1=120000 [1/min]

Webinar: Optimization and design of turbomachines using ANSYS optiSLang and CFturbo

II Optimization on MOP Methodology

II Optimization on MOP Result comparison

performance map ref design

Reference Design

Optimization on MOP

	<i>n</i> ₁ =	= 120000) [1/min]	<i>n</i> ₂ = 150000 [1/ <i>min</i>]			
	π _{tt max}	$\eta_{p max}$	choke massflow	π _{tt max}	$\eta_{p max}$	choke massflow	
ref	2,44	0,897	0,228	3,79	0,868	0,208	
opt	2,52	0,885	0,251	4,02	0,862	0,230	

II Optimization on MOP Result comparison

Reference Design

Optimization on MOP

	<i>n</i> ₁ =	= 120000) [1/min]	$n_2 = 150000 \; [1/min]$			
	π_{ttmax}	$\eta_{p max}$	choke massflow	π_{ttmax}	$\eta_{p max}$	choke massflow	
ref	2,44	0,897	0,228	3,79	0,868	0,208	
opt	2,52	0,885	0,251	4,02	0,862	0,230	

performamce map ref (back) and best (red) design

II Summary

Methodology of adaptive analysis of performance maps:

- ✓ Automation of an adaptive workflow
- \checkmark In Sensitivity successful applied for ~90% of the designs
- ✓ Optimization on MOP successful applied
- Improves method for performance maps in 3D-CFD

Supported by Thuringia from funds of the European Social Fund.

Need more information?

Support & trial license:

support@dynardo.com

Training: training@dynardo.de

Support: support@cfturbo.de

Training & trial license: info@cfturbo.de

www.cfturbo.de

www.dynardo.de