Rapid Design of an optimized Radial Compressor using CFturbo and ANSYS

Enrique Correa, Marius Korfanty, Sebastian Stübing
CFturbo Software & Engineering GmbH, Dresden (Germany)
PRESENTATION TOPICS

1. Company overview
2. Aerodynamic compressor design
3. Automated simulation process
4. Results
5. Conclusion and next steps
1. Company overview
Fields of activity

CFturbo® Software & Engineering GmbH (Germany)

1. CFturbo® Software
 - Design software for turbomachinery
 - Training courses
 - Workflows

2. CAE Consulting
 - Turbomachinery conceptual design
 - CFD/FEA simulation
 - Optimization

3. CAD & Prototyping
 - 3D-CAD modeling
 - Prototyping (with partners)
1. Company overview

Software customers (extract)
2. Aerodynamic compressor design

What is CFturbo?

CFturbo = conceptual turbomachinery design (radial, mixed-flow, axial) for impellers, stators and volutes

- **Fundamental fluid equations**
 - Euler's equation of turbom.,
 - Continuity,
 - Momentum equation,
 - Velocity triangles, ...

- **Empirical functions**
 - Publicly available experiences,
 - In-house know-How

- **Machine design point**
 - m, H/Δp, n,
 - Fluid properties,
 - Inlet boundary conditions

- **High geometrical flexibility, many checks, information**

- **Geometry import, redesign optionally**

- **New / improved 3D geometry**
2. Aerodynamic compressor design

CFturbo input

Design point

- Total pressure ratio $\pi_{tt} = 4$
- Mass flow $\dot{m} = 0.11 \text{ kg/s}$
- Rotational speed $n = 90,000 \text{ RPM}$
- Max. motor power $P_M < 30 \text{ kW}$
- Max. available power $P_i = 25.5 \text{ kW}$

Constraints

- Max. casing extension
- Manufacturing by flank milling
2. Aerodynamic compressor design
CFturbo design steps

Impeller
- Main dimensions
- Meridian contour
- Blade properties
- Mean lines
- Blades edges

Volute
- Cross section
- Spiral areas
- Diffuser, Cutwater

General
- Meridian view
- 3D-Model
2. Aerodynamic compressor design
CFturbo design steps

Design step example
2. Aerodynamic compressor design

Components

- Assembly
- Volute
- Diffuser
- Impeller
3. Automated simulation process

Overview

- **Conceptual Design**: CFturbo
- **Grid generation**: ANSYS ICEM-CFD
- **Simulation**: ANSYS CFX

Optimization
- Interactive or automatic

Design point, requirements → Optimization

Product

- ANSYS
- CFturbo
3. Automated simulation process
Meshing in ICEM-CFD

Export in CFturbo

ICEM-CFD parameters in CFturbo
3. Automated simulation process
Meshing in ICEM-CFD

CFturbo2ICEM panels in ICEM-CFD
3. Automated simulation process
Meshing in ICEM-CFD

- Fully automated, script based meshing with Tet/Prism, Hexa
- Mesh size: 4.6 Mill. nodes
- Design modifications and meshing within 1 hour
3. Automated simulation process

CFX settings

- Steady-state simulations (Frozen-Rotor model)
- Transient simulation for final model
- SST turbulence model
4. Results
Impeller and Volute

Static pressure

Velocity
4. Results
Impeller

Static pressure (mid-span) (blade-to-blade) (meridian)
4. Results
Performance map

[Graph showing performance map with various RPM values]
4. Results

Prototype
5. Conclusion and next steps

- CFD based design procedure for compressor stage
 - comfortable, easy-to-use
 - reliable results
 - very fast design and analysis

- 10 different compressors designed to get best compromise between efficiency, power requirements and geometrical constraints

- Project was running within 4 weeks

- Stage efficiency $\eta_{St} = 67\%$
- Impeller efficiency $\eta_{Imp} = 84\%$
- Power consumption $P_i = 25\ kW$
5. Conclusion and next steps

Optimization

- Efficiency optimization (impeller only) using optiSLang
- CFturbo for initial design and Pre-Optimization
- ANSYS TurboGrid for single passage meshing
- ANSYS CFX for flow simulation
- Adaptive Response Surface Method (ARSM): only ≈ 100 simulations on Desktop PC (< 24 h)
5. Conclusion and next steps

Optimization

Initial design: $\eta_{\text{Imp}} = 78\%$

Optimized design: $\eta_{\text{Imp}} = 84.5\%$

... will be continued for the whole compressor stage ...