

Outline

- **⊗** Background
- **Optimization objective**
- **Analysis tools**
- **⊗** Results

Background

Pumps are designed to:

- Move a certain volume of liquid
- Produce a certain exit pressure, which is measured in meters of head

Background

- ® Reducing the power required to drive the pump:
 - Allows for a smaller motor
 - Reduces operating cost
- A small reduction in required power translates to large cost savings

Optimization Statement

Objective

- 1. Reduce the power required to drive the pump Constraints
- Redesign only the impeller blades (not the casing)
- **Maintain the specified volumetric flow rate**
- **Maintain the specified outlet pressure**

Optimization Statement

Objective

2. Obtain a <u>set</u> of pump designs that require the least power for any given outlet pressure

Constraints

Redesign only the impeller blades (not the casing)

Maintain the specified volumetric flow rate

Best Possible

Optimization Algorithm

- The optimization of two competing factors (mass flow and power) is Pareto optimization
- All points on the "Pareto Front" are the best possible designs

HEEDS Multidisciplinary Design Optimization (MDO)

- Process Automation
 - Automate the Virtual Prototype Build Process
 - Enable Scalable Computation across platforms
- Design Exploration
 - Efficient Exploration (Optimization, Sweeps, DOE)
 - Sensitivity & Robustness Assessment

Typical Optimization Process

Standard Procedure

Modern Optimization Process

HEEDS Procedure

Build Baseline Model

Define Optimization Problem

SHERPA

Optimized Solution

- Hybrid
- Adaptive
- No Tuning Parameters
- No Optimization Expertise Required

© CFturbo Turbomachinery Design

- Interactive design tool
 - Rapid design of high-quality turbomachinery components
 - Integration of established turbomachinery design theory
 - Comfortable, reliable and user friendly
 - Direct interfaces for many CAE-software packages

CFturbo Design

- Turbomachinery design tool that allows for automatic or manual design of machines
- ## HEEDS will optimize the design based on 16 design parameters

Number of Parameters	Control
1	Number of blades
2	Leading edge position
4	Leading edge shape
3	Leading edge incidence angle
1	Leading edge curvature
1	Trailing edge position
3	Trailing edge incidence angle
1	Trailing edge curvature
16	Total

CFturbo Design Parameters: Leading Edge Position

CFturbo Design Parameters: Leading Edge Position

STAR-CCM+ Multi-physics Analysis

- First-principles computational fluid dynamics focused analysis tool
- Integrated environment for:
 - Geometry handling
 - Meshing
 - Solving
 - Post-processing

Integrated environment for pre-processing, meshing, solving and post-processing is ideally suited to optimization analysis

Meshing

- **Approximately 700,000 cells**
- **©** Unstructured polyhedral cells
- Body-fitted prism layers for accurate boundary layer prediction

Solving

- **First-principles Navier-Stokes solution**
- **⊗** Steady, in-place interface
- Segregated solver
- **®** Realizable k-€ turbulence model

Steps of analysis (which happen automatically)

1. Import new CAD geometry

- 1. Import new CAD geometry
- 2. Generate mesh

- 1. Import new CAD geometry
- 2. Generate mesh
- 3. Interpolate previous solution onto new mesh

- 1. Import new CAD geometry
- 2. Generate mesh
- 3. Interpolate previous solution onto new mesh
- 4. Solve

- 1. Import new CAD geometry
- 2. Generate mesh
- 3. Interpolate previous solution onto new mesh
- 4. Solve
- 5. Export performance prediction

Optimization Process

Optimization Process

Original Design

Flow Rate: 400 m³/hr

- Head: 29.2 m

Power: 38.4 kW

Optimized Design

- Flow Rate: 400 m³/hr

Head: 29.5 m

Power: 36.0 kW

> 6% reduction in power required

Original Design

>Flow remains attached

® Original Design

➤ Uniform pressure distribution

Original Design

➤ Reduces torque on blades

33 Designs found with lower power requirement

- **33 Designs found with lower power requirement**
- Parallel plot shows that improved designs have similar
 - Number of blades
 - Leading location
 - Trailing edge location

Review of Objective #1

- **® Reduced power required 6%**
- Design parameters and number of runs were the only inputs to the optimization algorithm
- Algorithm produced a case that resulted in:
 - Attached flow
 - Uniform pressure field
 - Low torque
 - > Low power required

Pareto optimization performed to understand trade-off between outlet pressure and power required

Power (kW)

§ 580 evaluations allowed

Note: It is challenging to increase pressure without changing the diameter of the machine

Head [m]

- Pareto optimization performed to understand trade-off between outlet pressure and power required
- **580** evaluations allowed

Original Design

3 % Reduction in Power7.3 % Increase in Head

Review of Objective #2

- **10** optimal pump designs produced
- Pressure head up to 34 m

Conclusions

Pump optimization study achieved two objectives:

1. Improve an existing pump design so that the same flow rate and exit pressure is achieved with lower power

Conclusions

Pump optimization study achieved two objectives:

2. Found a <u>set</u> of fan designs that require the least power for any given head up to 34m

Outline

- **⊗** Background
- **Optimization objective**
- **Analysis tools**
- **⊗** Results