

CFturbo

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

by Sascha Henoch and Ralph Peter MUELLER

- TENGAM Engineering Inc., is an automotive supplier that manufactures injection-molded magnets
- The company has decided to enter a new market segment: **electric automotive coolant pump**
- In cooperation with CFturbo, Inc. an all-new product has been created, a pump with a brushless electric motor
- CFturbo was responsible for the hydraulic design, CFD simulations, and optimization.
- Design targets
 - Compact dimensions
 - High efficiency
 - Low noise

Design Point

Fluid Glycol water mixture 50% - 50% at 20°C

Design point

	Volume Flow Rate	17.5	L/min
	Pressure Difference	52.0	kPa
	Rotational Speed	3950	rev/min
	Specific speed (EU)	20	
Та	rget Point		
	Volume Flow Rate	6.67	L/min
	Pressure Difference	25.5	kPa
	Rotational Speed	2250	rev/min
	Specific speed (EU)	12	

TOTAL PRESSURE DIFFERENCE, PUMP STAGE

Low

Design Point

Fluid Glycol water mixture 50% - 50% at 20°C Hydraulic efficiency ₁₀₀_<mark>ղի [%]</mark> **Design point** 90 Volume Flow Rate 17.5 L/min Pressure Difference 52.0 kPa 80 **Rotational Speed** 3950 rev/min Specific speed (EU) 20 70 Low Target Point **Volume Flow Rate** 6.67 L/min 60 Pressure Difference 25.5 kPa **Rotational Speed** 2250 rev/min 50 Specific speed (EU) 12

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

- CFD plays a crucial role in modern product design in the automotive industry
- Frontloading simulation: implement CFD simulations from the very beginning in the development process
- Meet design targets
- Get optimal solutions
- Reduce product development time and cost

Initial design phase

CFturbo

- Start with a reduced pump model
- Gradually increase complexity

Model Setup

Computational Grid

Simulation and Optimization Setup

- Isothermal
- Steady-state (MFR) and transient simulations
- High-order discretization scheme (space, time)
- RNG-based k- ε turbulence model
- Unified wall function
- Hydraulic smooth surfaces
- **Design optimization:** CFturbo + Simerics-MP + Dakota/optiSLang.
- Statistical methods to identify the most sensitive parameters.
- Surrogate-assisted optimization.

CEturbo

Transient flow, 4 impeller revolutions, 5 hours (AMD Ryzen Threadripper Pro 3945WX, 8 threads)

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

CFturbo

CFD Results, transient simulation

Leakage flow needs to be considered, even in the early development stage.

RELATIVE LEAKAGE, SECONDARY FLOW PATH, SHROUD

RELATIVE LEAKAGE, COOLING FLOW PATH

Prototype testing the initial design model \rightarrow some operating points were noise-wise conspicuously **Noticeable wear** at the axial thrust bearing was visible after prototype testing

CFturbo

• Double volute design to limit radial force level in off-design points

- Single volute
- Lowest production cost
- Preferred for low energy transmission

Double volute

- Reduction of radial forces
- Common pressure joint

Test Results – Analysis and Solution

Double volute design to limit radial force level in off design points

CFturbo

Double volute design to limit radial force level in off-design points

Test Results – Analysis and Solution

Volute with splitter \rightarrow optimize design to maintain efficiency

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

Design point adjustment

• A customer demand forced a **design point shift**, that needs substantially higher pump performance!

New Design point

Volume Flow Rate	35.0	L/min
Pressure Difference	180.0	kPa

New Low Target Point

Volume Flow Rate	20.0	L/min
Pressure Difference	100.0	kPa

Re-design, design exploration, optimization.

Design Point Adjustment – CFD Results

Using optimization, two new designs were identified for the adjusted design point.

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

Manufacturable product

REQUIRED ELECTRICAL POWER, PUMP STAGE

All-New Hydraulic Design of an Electrical Automotive Coolant Pump

Market-ready Product – Test and CFD Results

CFturbo

